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ABSTRACT OF ON POLE ASSIGNMENT IN MULTI-INPUT
CONTROLLABLE LINEAR SYSTEMS

W. M. Wonham

It is shown that controllability of an open-loop system
is equivalent to the possibility of assigning an arbitrary set of
poles to the transfer matrix of the closed loop system, formed by

means of suitable linear feedback of the state.




ON POLE ASSIGNMENT IN MULTI-INPUT CONTROLLABLE

LINEAR SYSTEMS

W. M. Wonham

INTRODUCTION

Consider the system
dx(t)/at = Ax(t) + Bu(t) . (1)

Here and in the following, all vectors and matrices have real-
valued elements and all matrices are constants. In (1), A,B are
matrices of dimension respectively n Xn and n Xm; x 1is the
state, an n-vector; and wu is an m-vector. As usual, u denotes
an external input.

Let us "close the loop" by setting

u=0x+v,

for some m X n matrix C and new external input v. Then (1)

becomes

ax(t)/at = (A+BC)x(t) + Bv(t) . (2)

In applications it is often desirable to choose C so that the




matrix A+BC has special properties: for example, stability.
Intuitively it is clear that the possibility of such a choice
depends on the controllability, in an appropriate sense,of the state
x with respect to u. In this note we single out the property

of "pole assignability", and show that it is equivalent to con-
trollability of (1) in the usual sense.

Tc be precise, let

A= {Kl,...,%n}
be an arbitrary set of n complex numbers %i, such that any Ai
with Im N £ 0O appears in A in a conjugate pair. We recall

that the pair (A,B) 1is (completely) controllable if and only if

the n X mn matrix

K = [B, AB,...,A""1

B]

is of full rank n. The result we wish to prove is the following.

THEOREM The pair (A,B) is controllable if and only if, for every

choice of the set A, there is a matrix C such that

A + BC has A for its set of eigenvalues.

In other words, controllability is equivalent to the




property that the closed-loop transfer matrix

[sI - (A+BC)] Y&

can be assigned an arbitrary set of poles by a suitable choice of
the feedback "gain" matrix C.

If B is an n-vector (m=1) the result stated is well-known,
and is obvious after a change of basis which transforms A to

companion (rational canonical) form and B to the form

B = (0,0,...,0,1)'. (prime denotes transpose)

Such a choice of basis is always possible if (A,B) is controllable;
for the details see, for instance, [1], p.1l3.

To prove the result in the general case we first transform
(A,B) to a canonical form in which our multi-input system is
exhibited as a triangular array of subsystems, each of the type
Just described. This transformation is due to Langenhop [2]. He
proved a theorem similar to ours, in the case where U = Fx+Gu,
and the elements of the parameter matrices may be arbitrary com-
Plex numbers., The present restriction to real-valued elements
apparently prevents the immediate application of Langenhop's result;

b

however, basically we follow the same route,



PROOF OF THE THEOREM
1. Sufficiency.
The argument of [2] applies without change. 1In fact,
let xl""’kn be any distinct real numbers such that det(A-%iI)ﬁ
0 (i=1,...,n). By assumption there are n-vectors X4 £0

(i =1,...,n) and an m X n matrix C such that

(A + BC - 7\iI)xi =0 (i=1,...,n)

or

(A-?\iI)-lBCxi = X, (i

1,...,0). (3)
Since

n .
(a-n1)"t = T oo.()ad-t
j=1 Y

for suitable rational functions pj, (3) implies

n 1
z pj(%i)AJ' BC x; = X, (i =1,...,n) . (k)

J=1 *
Because the Ai are distinct, the eigenvectors X; of A+BC
are linearly independent; thus (4) states that the range of K

is the whole space, that is, K has rank n.

2. Necessity.

The proof of necessity leans on the theory of cyclic




subspaces ([3], Chapter 7). For completeness' sake we collect in

2,1 some definitions and preliminary results.

2.1 Denote the coordinate n-space by E and let the n X n
matrix A be fixed. If b € E and b 0 let v(b) be the
greatest integer such that the vectors

A_v(b)-l

b

gy

are linearly independent, and let Eb denote their span. Eb is

the cyeclic subspace generated by b, E 1is cyclic if there exists

b € E such that E_ = E, that is, such that (A,b) 1is controllable.

The minimal polynomial (m.p.) of b is the (unique) monic poly-

nomial PB(A) of lowest degree such that PB(A)b = 0. Thus b
generates E 1if and only if the m.p. of b 1is of degree n. The

minimal polynomial (m.p.) of E 1is, as usual, the (unique) monic

polynomial aA) of least degree such that o(A) = 0; a(A) is the
least common multiple (LCM) of the m.p. B(A) of the vectors b € E.
Evidently E is cyclic only if the degree of o)) 1is n; we

state the converse as

LEMMA 1 ([3],p.180, Theorem 2)

If the m.p. a(A) of E is of degree n then E is

cyclic; that is, there exists b € E such that the m.p. of b

is a(A).



In particular the condition of Lemma 1 holds if the

eigenvalues of A are distinect.

Two

common divisor (GCD) is 1.

are monic polynomials

monic polynomials @,V

are coprime if their greatest
Then by ([4],p.75,Theorem 12) there

p,0 such that

p(Ne(A) + o(M¥(A) =1

LEMMA 2 (cf.
Let
of E. zz b

coprime, then

[4],p.324, Theorem 19, Corollary).

E be cyclic, with m.p. a; and let

= Y(A)c

b

¢ be a generator

for some polynomial ¥ and if Q,7 are

is also a generator of E.

The converse is also true, but will not be needed.
FROCF.

Let B be the m.p. of b. Since «a,Y are coprime
there exist p,0 such that 1 = yp+ao. Thus

c = Y{A)p(A)c + a(A)o(A)e = p(A)D .
If x € E is arbitrary then for some 6,

x = 8(A)e = 6(A)p(A)b ;
then B(A)x = 0, and so o|f (o divides B). Since «a is the




m.p. of E, Bla. Hence B = o, and so b generates E. The
proof is complete.

Let B be an n Xm matrix as before, and let (B}
denote the subspace of E spanned by the column vectors of B.
Obviously if ({B} contains a generator of E then (A,B) is
controllable. Since the m.p. of E may be of degree less than
n, the converse statement is in general false. However, for the

cyclic case we have

LEMMA 3

Let (A,B) be controllable and let E be cyclic.

There exists an n-vector b e {B} such that (A,b) is control-

lable,

PROOF.

For i=1,...,m let 61 be the m.p. of bi and Ei
the subspace generated by bi' Thus E = El +eo ok Em and, if o
is the m.p. of E,

o= LCM(Bl, .. .,Bm)

Let ¢ be a generator of E. There are polynomials
Tys+--5Y, such that b, = Yﬁ(A)c, i=1,...,m. We shall prove

the existence of real numbers 1Py

rl,...,rm such that r. b, +...+ rmbm



generates E. By Lemma 2, it is enough to choose the ri so that

r(A) = v (N + eee ey (V)

is coprime with <.

For this, note first that
GCD {a(N), 1y (N), .- -5, (W)} = 1 (5)
In fact, if « 1is the GCD on the left, then
a=Ka, T, =K. (i=1,...,m)

for suitable polynomials &, ?i' Then

a(A)b; = QAN (A)Y; (A)e

T (W)a(a)e

A
Thus Biloz (i =1,...,m); hence (by definition of the LCM)

a|&; that is, k = 1.

Finally, observe that «,y are coprime if and only if

Y(Kj) #0 (j=1,...,n), where the kj are the (complex) zeros




of a(N\). By (5), the quantities Yi(%j) (i=1,...,m) cannot
all vanish for any Aj. Therefore numbers r, with the required
property exist.

The next observation will be useful; the simple proof

is omitted.

LEMMA L,
If (A,B) is controllable and C is any m X n matrix

then (A+BC,B) is controllable.

We shall also use the concept of congruence: for de-

tails see [3], Ch. 7, §3. Let E, be an invariant subspace of

1
E, that is Ax € El whenever X € El' A subspace E2 is invar-
iant (mod El) if x e E2 implies Ax = v+ Yo where y, € El
and y, € E,. We write x=0 (mod El) if x e E,. Vectors
XyyeeesX, are linearly independent (mod El) if the relation
T)Xy +eeut X =0 (mod El) implies 1) = ... = r, =0, for all
sets of scalars TepeeesTye For some b £ E, let v be the greatest

integer such that the vectors

b, &b, ..., AV
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are linearly independent (mod El)’ and let E2 be their span.

Then E, is cyclic (mod El); clearly E, is invariant (mod El).

2
The relative m.p. of E, (mod El) is the (unique) monic polynomial

7 of least degree such that n(A)x = 0 (mod El) for all x € E,.

2,2 We are now ready to prove necessity. Let bi denote

the ith column of B:
B = [bl,...,bm] 3

let Ei be the cyclic subspace generated by bi; and put n. =

dim(Ei). Since (A,B) is controllable,

but in general the E, are not independent. However, we can

write E as a direct sum
E=E @E G ... @ﬁt (t S m) (6)

where the ﬁi are certain subspaces of the Ej' To see this,

define E, = E,. If b£ E, let vy, 15V, =n, be the greatest

integer such that the vectors

nl-l V2—l
Abl,..eyA T by, DpyAby, .., A b

by, 19 PpsAby 5
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are linearly independent, and let ﬁg be the span of the vectors
AJ'lbg(j = l,...,v2). Thus E, is cyclic (mod El)’ and has
relative m.p. of degree Ve Continuing in this way, for 1 2z 2
define Vi’ 1= Vi s n,, to be the greatest integer such that the
vectors
vi-1-1 vi-1
bl,...,A i1 bi’Abi""’A bi
are linearly independent, and let ﬁi be the span of AJ_lbi
(3 = 1,...,v;). Then E, is cyclic (mod E; @ ... @E; ;), with
relative m.p. of degree 7L If at any stage bie ﬁl@ @Ei 1
( iz 2), then b. is skipped; by re-ordering the columns of B
if necessary we can arrange that for 1 = 1,...,t the vectors b.l
generate independent subspaces ﬁi’ where either t =m or
~ - ) i _ . j— a -‘ A
beE @...@E (s =t+l,...,n). Since A lb.le E@...08

if §z v+l (1 =ism), it follows that (6) is true and thus

We shall now transform A to a convenient canonical form,

Let
v i
i j-1 .
AT - aiij (i=1,...,r) (7)

J=1

be the relative m.p. of b, (mod Bl + eee + ﬁi-l) or the absolute
m,p., of bl in case i = 1. Following Langenhop [2] introduce

vectors
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v, -k Yy
e.. =A T b, - T q . aELy (82)
ik i . i i
J=k+1

(k = 1,2,...,v i=12,...,t), where the summation does not

i3

appear in case k = Vi3 that is
= b, (i =1,...,t) . (8b)

It is clear that for each 1 the vectors e, (k = l,...,vi)
are independent linear combinations of the vectors Aa_lbi

(j = 1,...,v;), and thus the entire set of e, ~1is a basis for

E. Observe that for 2 = k = Vis

Ae = i=1

ik~ 4,k-1" ki, (

yeee,t ). (9a)

Furthermore, using the fact that the relative m.p. of bi (mod

E) + eee ¥ Ei-l) is of degree v, we have (ef. (7)).
ii} ;F
Ae. = q.e. + PR (9p)
il il v, k=1 j=1 ijk kJ

(i =1,...,t) for certain scalars Y;jys and where the double
summation does not appear if i = 1.
Using (9), we next compute the form of A, regarded as

a linear transformation in E, relative to the basis €19s°°°9€1y s
1

621""’e2v2""’etl""’etvt' That is, let H be the matrix with
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-1

column vectors ik in the order just written and let T = H

Then TAT = & has the block form

=2
]

. (10)

In (10) the matrices Ai which occur on the diagonal of A are

vy X A companion matrices

A, = . y (i =21,...,t); (11)

and the matrices Aij have dimension Vi X Vj .

Finally, TB = B s Where



1k

rm [}
OGN
~o ~s - IN
B = b2 EBO (12a)
M ]
1
O B :
b
t
Here the vi-vectors gi = Tbi have the form
b, = (0,...,0,1)", (12b)

1

and B_ = T[b
o

t41r 2Pyl is an n X (m-t) matrix (which does not

appear if t = m).
To verify (10), (11), (12) in detail observe that Tx

is the column of components of x in the basis (e Thus the

ik}'
p'th column of A is a list of the components, in this basis, of

A where e, is the p'th basis vector. This list can be read

“ik ik
off from (9). Similarly gi is the column of components of b,
so that (12) follows at once from (8b).

With A,B in canonical form, we next show that the
eigenvalues of A+BC can be prescribed arbitrarily. Put ¢ = CT-l
and observe that the matrix A+BC is similar under T +to A+BC,

From now on we drop the tilde on K,%,E. Next, take € 1in the

form
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C = ’ (13)
O ct

where

In C the upper block is of dimension t X n and the lower block

of dimension (m-t) X n. From (10) through (13) we see that

pneasmn

P(M) Ap...A

12 1t
p,(%)
A+ BC - AL = A
t-1,t
B, ()

where, for i = 1,...
>
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P.(A) = A,+ b,cl-Al =
1 1 1l 1

R sesse

. . 0 =X

Qo +C, g O +C g eneoooaneyld, +C. =A
L il "i1?7ie iz’ ’ 1vi 1Vi

Let pi(x) be the determinant of Pi(k); that is,

V.
V. 1

V. .
(-1) "p;(A) = » - z (oz:.Lj:fciJ.)xJ'l (1k)

J=1

From the triangular form of A+BC-AI 1t follows that
det (A+BC-AI) = pl()\,) pr(x) .

Also, it is clear from (14) that the zeros of pi(x) can be assigned
arbitrarily (subject to conjugacy of complex zeros) by proper choice
of the real coefficients cij' This shows that, in particular, the

system (1) can always be stabilized by appropriate choice of C.

To show that an arbitrary set of eigenvalues A can be
assigned, we must take account of the fact that the matrices Pi(k)
are of fixed dimension: if for example t=2 and Pl’P2 are each
of dimension 1 X 1, it is impossible to assign an arbitrary complex

pair of eigenvalues by independent adjustment of P1sPo. This 1s the added
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difficulty arising from our restriction to real parameters, To

proceed, let C = Cy + C,, where C, 1is of the form (13), and is

1
subject only to the requirement that all the eigenvalues of A+BCl

be distinct; we have just seen that such a choice of CC is possible.

1
Then,by Lemma 1, the space E 1s cyclic relative to the matrix
A+BC,. By Lemma L, (A+BCl,B) is controllable. Applying Lemma 3,
we find an n-vector b € {B} such that (A+BCl,b) is controllable,

Now b = Bg for a suitable m-vector g. Thus if we set

u=ClX+gV+W

our system (1) takes the form

X = (A+BCl)x + bv + Bw

Finally, because the theorem is true in the single-input case, we

can choose

v =c'x

such that the matrix A+BCl¥bc' has the desired set of elgenvalues

A . That is, the feedback matrix

¢ = Cl + ge!

has the required property. The theorem is proved.
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COMMENTS

1. The construction in the proof of necessity can be summarized
in terms of a block diagram (Figure). After choosing a suitable
set of state variables (the canonical form (8)-(12)) the designer
constructs an inner feedback loop (through the Cy matrix) which
renders the system cyclic: that is, controllable by a single input.
The designer then picks a suitable input in the form gv (Bg =1
is a generator of E), and completes the outer loop by setting

v = c¢'x to achieve the required disposition of poles. 1In this

note we have not attempted to algorithmize the procedure.

2. In practice there may be many ways of choosing state variables
and the quantities Cl,g,c to achieve a given assignment of poles.
To exploit this freedom via suitable criteria of design is an
interesting problem of current research. In this direction, see,

for instance, [5].

3. It is worth noting that more than one 'canonical' form (10)-(12)
may exist for a given (A,B) pair. That is, the matrix X of (10)
may not reveal the intrinsic structure of A, as do the usual rational
canonical decompositions into block-diagonal forms ([3];Ch.7). The
drawback of such block-diagonal representations here is that, in
general, the cyclic subspaces corresponding to individual blocks

need not have generators in the subspace {B}. If they do, the

corresponding controls are completely non-interacting,

L. Although the proof has some intrinsic interest, it seems exces-

sively clumsy beside the simplicity of the result.
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